Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide
نویسندگان
چکیده
Temperature-dependent viscosity, conductivity and density data of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide (EMIM-TFSA), ethylene carbonate (EC), and lithium bis(trifluoromethanesulfonyl)azanide (Li-TFSA) were determined at atmospheric pressure in the temperature range of 20 to 80 °C. Differential scanning calorimetry (DSC) measurements were performed to characterize phase conditions of the mixtures in a temperature range of -120 to +100 °C. The viscosity data were fitted according to the Vogel-Fulcher-Tammann-Hesse (VFTH) equation and analyzed with the help of the fractional Walden rule. In this study, fundamental physicochemical data about the mixtures are provided and discussed as a basis for structure-property relationship calculations and for potential use of those mixtures as electrolytes for various applications.
منابع مشابه
Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage.
The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. ...
متن کاملAllylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a...
متن کاملElectrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and i...
متن کاملTwo phosphonium ionic liquids with high Li(+) transport number.
This work presents the physicochemical characterization of two ionic liquids (ILs) with small phosphonium cations, triethylpenthylphosphonium bis(trifluoromethanesulfonyl)imide ([P2225][Tf2N]) and (2-methoxyethyl)trimethylphosphonium bis(trifluoromethanesulfonyl)imide ([P222(201)][Tf2N]), and their mixtures with Li(+). Properties such as the electrochemical window, density, viscosity and ionic ...
متن کاملThe effect of lithium salt doping on the nanostructure of ionic liquids.
In this work we report on the evolution of the structure of two model ionic liquid families, N-alkyl-N-methylpyrrolidinium (Pyr1n-TFSI) and 1-alkyl-3-methylimidazolium (CnMIm-TFSI) (n = 3, 4, 6 and 8) both containing the bis(trifluoromethanesulfonyl)imide (TFSI) anion, upon the addition of LiTFSI using small angle X-ray scattering (SAXS). The introduction of a lithium salt (Li-salt) tunes the i...
متن کامل